miércoles, 30 de mayo de 2007

0,9=1 o cómo meter un elefante en una gabardina

Gracias wikipedia

Aunque no lo creáis 0,9 periódica pura es igual a 1

La igualdad ha sido aceptada por los matemáticos hace ya bastante tiempo y aparece de manera rutinaria en libros de texto.

-Partimos de que 1/3 = 0,333…
-Multiplicamos por 3 ambos miembros: 3 × (1/3) = 3 × 0,333…, que debería dar 0,999…
-Vemos que 0,999… debe ser forzosamente 1, puesto que (1 / 3) × 3 = 1.

-Suponemos que x = 0,999… [1]
-Multiplicamos por 10 los dos números: 10x = 9,999… [2]Restamos las dos expresiones en los dos miembros: 10 x - x = 9,999… - 0,999… [2] – [1]
-Obtenemos que 9x = 9, es decir, x = 1, como queríamos demostrar.

-Si x es un número entero entre 0 y 9, podemos considerar la siguiente fórmula

0.xxx \ldots = \frac{x}{9}

-Tomamos el valor numérico de "x" como "9"

-Llegamos a la conclusión de que:

0.999 \ldots = \frac{9}{9}

5 comentarios:

MIGUELÓN dijo...

La matamática es la ciencia más inexacta y con más cuento jamás inventada. ¿Esto no tiene un contador de visitas?

MIGUELÓN dijo...

Ah, sí, ya lo he visto, nuestra vanidad coge fuerzas :)

charpa dijo...

Se vuelven todavia mas inexactas cuendo unimos matemáticas y economía.

Un ejemplo vamos todos a cenar y hacemos las cuentas, siempre por alto pa dejar propina en plan generosos, xq nosotros somos de la clase "busine", y viene pitagoras y nos sodomiza...siempre faltan 5 euros.

Esta es la ley del charpa y las cenas con mas de 6 personas.

Es similar a la ley de numero de personas + 1 xa elegir el número òptimo de cartones de tinto.

Anónimo dijo...

> La igualdad ha sido aceptada por los matemáticos hace ya bastante tiempo y aparece de manera rutinaria en libros de texto.

Es que no es que haya que aceptarla. Es evidente, lo mismo que el ruido del árbol que cae y que no oye nadie. Otra manera de demostrar que cero coma nueve periodo es 1 es que no se puede encontrar ningún número entre ellos, porque si lo hubiera, ¿cuál sería su desarrollo decimal?

MIGUELÓN dijo...

0.9 periódico no es uno, pero como no le encuentran diferencias lo definen como 1. Pero no es más que una aproximación. Normalmente las ciencias se centran en modelar la realidad, la matemática se acaba modelando a sí misma, por lo que llega a desfachateces e incoherencias como la de esta igualdad.
Es como el infinito, hay infinitos mayores que otros, y más rápidos...
Las invetó el hombre para estafarse a sí mismo...